The melting of pulmonary surfactant monolayers.

نویسندگان

  • Wenfei Yan
  • Samares C Biswas
  • Ted G Laderas
  • Stephen B Hall
چکیده

Monomolecular films of phospholipids in the liquid-expanded (LE) phase after supercompression to high surface pressures (pi), well above the equilibrium surface pressure (pi(e)) at which fluid films collapse from the interface to form a three-dimensional bulk phase, and in the tilted-condensed (TC) phase both replicate the resistance to collapse that is characteristic of alveolar films in the lungs. To provide the basis for determining which film is present in the alveolus, we measured the melting characteristics of monolayers containing TC dipalmitoyl phosphatidylcholine (DPPC), as well as supercompressed 1-palmitoyl-2-oleoyl phosphatidylcholine and calf lung surfactant extract (CLSE). Films generated by appropriate manipulations on a captive bubble were heated from < or =27 degrees C to > or =60 degrees C at different constant pi above pi(e). DPPC showed the abrupt expansion expected for the TC-LE phase transition, followed by the contraction produced by collapse. Supercompressed CLSE showed no evidence of the TC-LE expansion, arguing that supercompression did not simply convert the mixed lipid film to TC DPPC. For both DPPC and CLSE, the melting point, taken as the temperature at which collapse began, increased at higher pi, in contrast to 1-palmitoyl-2-oleoyl phosphatidylcholine, for which higher pi produced collapse at lower temperatures. For pi between 50 and 65 mN/m, DPPC melted at 48-55 degrees C, well above the main transition for bilayers at 41 degrees C. At each pi, CLSE melted at temperatures >10 degrees C lower. The distinct melting points for TC DPPC and supercompressed CLSE provide the basis by which the nature of the alveolar film might be determined from the temperature-dependence of pulmonary mechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of pulmonary surfactant protein A with dipalmitoylphosphatidylcholine and cholesterol at the air/water interface.

Interaction of pulmonary surfactant protein A (SP-A) with pure and binary mixed dipalmitoylphosphatidylcholine (DPPC) and cholesterol (3.5 wt%) at the air/saline, 1.5 mM CaCl2 interface was investigated using a rhomboid surface balance at 37 degrees C. Surface tension-area isotherms were measured to access the surface active properties of the monolayers. The organization of DPPC and cholesterol...

متن کامل

Langmuir monolayers with internal dipoles: Understanding phase behavior using Monte Carlo simulations.

A coarse-grained, rigid-rod model that includes steric interactions and an internal dipole is used to study monolayers of surfactant molecules tethered to a flat interface. Monte Carlo simulations are performed in the canonical ensemble for a range of high-density configurations with varying degrees of dipole strength. Both a melting transition and a tilting transition are observed, and the dep...

متن کامل

Lipid compositional analysis of pulmonary surfactant monolayers and monolayer-associated reservoirs.

Pulmonary surfactant is a lipid:protein complex containing dipalmitoyl-phosphatidylcholine (DPPC) as the major component. Recent studies indicate adsorbed surfactant films consist of a surface monolayer and a monolayer-associated reservoir. It has been hypothesized that the monolayer and its functionally contiguous reservoir may be enriched in DPPC relative to bulk phase surfactant. We investig...

متن کامل

Pulmonary surfactant protein A interacts with gel-like regions in monolayers of pulmonary surfactant lipid extract.

Epifluorescence microscopy was used to investigate the interaction of pulmonary surfactant protein A (SP-A) with spread monolayers of porcine surfactant lipid extract (PSLE) containing 1 mol % fluorescent probe (NBD-PC) spread on a saline subphase (145 mM NaCl, 5 mM Tris-HCl, pH 6.9) containing 0, 0.13, or 0.16 microg/ml SP-A and 0, 1.64, or 5 mM CaCl(2). In the absence of SP-A, no differences ...

متن کامل

How does pulmonary surfactant reduce surface tension to very low values?

Background: Although initially proposed by von Neergaard in 1929 (14), direct evidence for surface-active material at the air-fluid interface of the lung was first reported by Richard Pattle and John Clements in the 1950s (5, 10). Pattle deduced that microbubbles formed from lung washings could reduce surface tension ( ) to near 0 mN/m. Using his modified Langmuir-Wilhelmy balance, Clements dem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 102 5  شماره 

صفحات  -

تاریخ انتشار 2007